Radial Positive Definite Functions Generated by Euclid's Hat

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Smoothing splines using compactly supported , positive definite , radial basis functions

In this paper, we develop a fast algorithm for a smoothing spline estimator in multivariate regression. To accomplish this, we employ general concepts associated with roughness penalty methods in conjunction with the theory of radial basis functions and reproducing kernel Hilbert spaces. It is shown that through the use of compactly supported radial basis functions it becomes possible to recove...

متن کامل

Convolution Roots of Radial Positive Definite Functions with Compact Support

A classical theorem of Boas, Kac, and Krein states that a characteristic function φ with φ(x) = 0 for |x| ≥ τ admits a representation of the form φ(x) = ∫ u(y)u(y + x) dy, x ∈ R, where the convolution root u ∈ L2(R) is complex-valued with u(x) = 0 for |x| ≥ τ/2. The result can be expressed equivalently as a factorization theorem for entire functions of finite exponential type. This paper examin...

متن کامل

Some numerical radius inequalities with positive definite functions

 ‎Using several examples of positive definite functions‎, ‎some inequalities for the numerical radius of‎ ‎matrices are investigated‎. ‎Also‎, ‎some open problems are stated‎.

متن کامل

Interpolation with Positive Definite Functions

I t i s well-known t h a t k r i g i n g and i n t e r p o l a t i o n by s p l i n e s a r e e q u i v a l e n t . Kr ig ing i s based on a s t o c h a s t i c f o r m u l a t i o n whereas s p l i n e s a r e f o r m u l a t e d I n a d e t e r m i n i s t i c way. A t h i r d p r e s e n t a t i o n i s g i v e n i n terms of Rad ia l P a s i s F u n c t i o n s . The c n n n e c t l o n s b...

متن کامل

Strictly Hermitian Positive Definite Functions

Let H be any complex inner product space with inner product < ·, · >. We say that f : | C → | C is Hermitian positive definite on H if the matrix ( f(< z,z >) )n r,s=1 (∗) is Hermitian positive definite for all choice of z, . . . ,z in H, all n. It is strictly Hermitian positive definite if the matrix (∗) is also non-singular for any choice of distinct z, . . . ,z in H. In this article we prove...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Multivariate Analysis

سال: 1999

ISSN: 0047-259X

DOI: 10.1006/jmva.1998.1800